Bi₂Te₃ Incorporated Graphene for H₂ Gas Detection

Shubhda Srivastava¹ and T.D. Senguttuvan²

^{1,2}Physics of Energy Harvesting, National Physical Laboratory, Dr K. S. Krishnan Marg, New Delhi, 110012, India E-mail: shubhdagaur@gmail.com

Abstract—The recently discovered second generation of TIs such as Bi_2Te_3 has drawn much attention in device applications because of its potential applications in tuning the transport properties of TI based devices. Graphene, strictly a 2D material with entire surface exposed to the environment makes it highly efficient for detecting adsorbed molecules. Bi_2Te_3 embedded Graphene-based nanocomposites have proven to be very promising materials for gas sensing applications. In this paper, we present a general approach for the preparation of graphene– Bi_2Te_3 nanocomposite. Graphene– Bi_2Te_3 nanocomposite thin-layer sensors were prepared by drop coating the dispersed solution onto the alumina substrate. These nanocomposites were used for the detection of H_2 gas. TEM micrographs showed that Bi_2Te_3 nanoparticles were well distributed on graphene nano sheets. Three different loadings (0.2, 0.5 and 0.1 wt %) of graphene with Bi_2Te_3 were used for the gas sensing measurements. It was observed that the sensor response to H_2 increased nearly two times in the case of graphene– Bi_2Te_3 nanocomposite layer as compared to a pure Bi_2Te_3 layer.